skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Treumann, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study Legendrian surfaces determined by cubic planar graphs. Graphs with distinct chromatic polynomials determine surfaces that are not Legendrian isotopic, thus giving many examples of non-isotopic Legendrian surfaces with the same classical invariants. The Legendrians have no exact Lagrangian fillings, but have many interesting non-exact fillings. We obtain these results by studying sheaves on a three-ball with microsupport in the surface. The moduli of such sheaves has a concrete description in terms of the graph and a beautiful embedding as a holomorphic Lagrangian submanifold of a symplectic period domain, a Lagrangian that has appeared in the work of Dimofte–Gabella–Goncharov. We exploit this structure to find conjectural open Gromov–Witten invariants for the non-exact filling, following Aganagic–Vafa. 
    more » « less